Apparatuses for energy harvesting and energy transfer

Dr. George Youssef, San Diego State University

Energy harvesters are devices that convert energy from an external source and convert into usable energy. Most energy harvesters rely upon resonance. The latter often occurs at a fundamental natural frequency. However, deviating from the natural frequency in an oscillator exhibiting linear behavior often results in a steep drop in output energy approaching zero.

This invention describes a novel aeroelastic energy harvester that behaves nonlinearly. This allows for a broader operational frequency range and an improved efficiency over existing energy harvesters. Additionally, an apparatus for mechanoelectrically harvesting energy from an externally applied vibration comprises a flexible structure of piezoelectric material, which is configured to generate an electrical charge in response to the deflection.

Near-field wireless energy transfer (WET) allows the receiving of energy without a physical link to a power source. It can be especially advantageous for powering applications where the energy-storage capacities of batteries are limited, or interconnecting insufficient and wires are inconvenient/dangerous/not possible. Current industrial use of short distance WET technology suffers from drawbacks such as safety concern and the need to ground the receiver (capacitor-based WET), poor scaling to the microscale, selfinduction, and Joule heating energy loss (induction-based WET) and poor overall efficiency (acoustic-based WET). Magnetoelectric effect (ME) is often utilized to alleviate shortcomings of near-field WET technologies. In existing magnetic field generators, the larger the desired magnetic field, the larger the generator or transformer that is needed. Also, micro- and nanoscale applications tend to waste significant electrical energy, making them impractical for the generation of magnetic fields.

<u>This invention</u> describes an apparatus for near-field wireless energy transfer. A first layer provides or comprises a piezoelectric phase or a material with or adapted for electromechanical coupling; and a second layer provides or comprises a magnetostrictive phase or a material with or adapted for a magnetomechanical coupling. The second layer is mechanically and/or chemically coupled to the first layer to provide a composite structure. The ring structure can produce a uniform AC magnetic field from a low-power AC voltage in the presence of a DC magnetic field; the outer surface of the electrode is grounded.

ADVANTAGES

- Broader operational frequency range, improved efficiency, flexible structure [Energy harvester]
- Suitability for nano- and microscale applications; capability to work independently of size, low-power and a wideband frequency output [WET]

APPLICATIONS

- Energy, networking, virtually any industry [Energy harvester]
- Medical instrumentation Active (e.g., • implanted medical devices such as pacemakers); vehicle-to-vehicle and vehicleto-grid charging; electric motors, electricity distribution and generation (transformers), wireless power transfer, antennas, computer memory, electronics, wireless power transfer (automotive and consumer electronics) [WET]

PUBLICATIONS

- U.S. Patent Application No. 17/456,495 entitled "Low-power high-frequency directional tunable AC magnetic field" (Notice of Allowance mailed November 4, 2022), and
- Pending U.S. Provisional Patent Application
- <u>Research Publications List</u>

CONTACT

Tommy Martindale Director SDSU Technology Transfer Office tmartindale@sdsu.edu

